
Orchestra
Release 0.1.0

September 29, 2015

Contents

1 Getting Started with Orchestra in 5 Minutes 3
1.1 Install Dependencies . 3
1.2 Create a Django Project . 3
1.3 Install and Configure Orchestra . 3
1.4 Run Orchestra . 5
1.5 Run the Example Project Demo . 5

2 Example Use Case: The Newsroom 7
2.1 The workflow . 7
2.2 Running the workflow . 8
2.3 The code . 13

3 Key Concepts 17
3.1 Workflows . 17
3.2 Project Distribution . 18
3.3 Hierarchical Review . 18
3.4 Worker Certification . 18
3.5 Life of a Task . 19

4 Our Motivation 21

5 How to contribute to Orchestra 23
5.1 Getting involved . 23
5.2 Development Workflow . 23
5.3 Quick Style Guide . 24

6 API Reference 25
6.1 Client API . 25

7 Core Reference 29
7.1 Workflow . 29
7.2 Models . 32
7.3 Task Lifecycle . 35

8 Indices and tables 41

Python Module Index 43

HTTP Routing Table 45

i

ii

Orchestra, Release 0.1.0

Orchestra is an open source system to orchestrate teams of experts as they complete complex projects with the help of
automation.

Contents 1

Orchestra, Release 0.1.0

2 Contents

CHAPTER 1

Getting Started with Orchestra in 5 Minutes

What follows is a simple 5-minute guide to getting up and running with Orchestra that assumes some basic Python
and Django experience, but not much else. For a deeper introduction, you might want to check out our Key Concepts,
and for in-depth information on using and developing with Orchestra, take a look at our API documentation.

1.1 Install Dependencies

Orchestra requires Python 3 and Django version 1.8 or higher to run, so make sure you have them installed. We
recommend setting up a virtual environment to isolate your Python dependencies, and we’re fond of virtualen-
vwrapper to make that process easier. Make sure to create your virual environment with Python 3 by passing
--python=/path/to/bin/python3 if it isn’t your default development setup.

Orchestra requires a number of Python dependencies to run. You can install them by simply pulling down and installing
our requirements.txt file:

wget https://raw.githubusercontent.com/unlimitedlabs/orchestra/stable/requirements.txt
pip install -r requirements.txt

1.2 Create a Django Project

Orchestra is a Django app, which means that it must be run within a Django project (for more details, read the
Django tutorial on this topic). Start a project with django-admin startproject your_project, replacing
your_project with your favorite project name. From here on out, this document will assume that you stuck with
your_project, and you should replace it appropriately.

1.3 Install and Configure Orchestra

Next, let’s get Orchestra installed and running. To get the code, just install using pip: pip install orchestra.

Orchestra has a number of custom settings that require configuration before use. First, download the default Orchestra
settings file and place it next to the project settings file:

wget https://raw.githubusercontent.com/unlimitedlabs/orchestra/stable/example_project/example_project/orchestra_settings.py
mv orchestra_settings.py your_project/your_project

Next, edit the orchestra_settings.py file:

3

https://docs.djangoproject.com/en/1.8/topics/install/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
https://virtualenvwrapper.readthedocs.org/en/latest/
https://virtualenvwrapper.readthedocs.org/en/latest/
https://docs.djangoproject.com/en/1.8/intro/tutorial01/#creating-a-project
https://docs.djangoproject.com/en/1.8/intro/tutorial01/#creating-a-project

Orchestra, Release 0.1.0

• Add ’simple_workflow’ to settings.INSTALLED_APPS in the “General” section if you want to
run the demo workflow (instructions below), and add ’journalism_workflow’ if you want to run the
journalism workflow.

• Adjust your email settings. By default, Orchestra will direct all messages to the console, but for a realistic
registration workflow you’ll want to set up a real mail server that can actually send emails.

• Change settings like the ORCHESTRA_PROJECT_API_SECRET from ’CHANGEME’ to more appropriate
values.

• Optionally, add 3rd party credentials in the “3rd Party Integrations” section so that Orchestra can store files on
Amazon S3 and use Google Apps and Slack to help communicate with expert workers.

Then, at the bottom of your existing settings file (your_project/your_project/settings.py), import the
Orchestra settings:

from .orchestra_settings import setup_orchestra
setup_orchestra(__name__)

You’ll also need to set up Orchestra’s URLs, so that Django knows where to route users when they view Orchestra in
the browser. If you don’t have any URLs of your own yet, you can just download our barebones example file with wget
https://raw.githubusercontent.com/unlimitedlabs/orchestra/stable/example_project/example_project/urls.py.

Alternatively, just make sure to add the following code inside the urlpatterns variable in
your_project/your_project/urls.py:

Admin Views
url(r'^orchestra/admin/',

include(admin.site.urls)),

Registration Views
Eventually these will be auto-registered with the Orchestra URLs, but for
now we need to add them separately.
url(r'^orchestra/accounts/',

include('registration.backends.default.urls')),

Logout then login is not available as a standard django
registration route.
url(r'^orchestra/accounts/logout_then_login/$',

auth_views.logout_then_login,
name='logout_then_login'),

Orchestra URLs
url(r'^orchestra/',

include('orchestra.urls', namespace='orchestra')),

Beanstalk Dispatch URLs
url(r'^beanstalk_dispatch/',

include('beanstalk_dispatch.urls')),

Finally, you’ll need to get the database set up. Create your database with python manage.py migrate. You’ll
also want to make sure you have an initial worker account set up to try out example workflows. We’ve provided
several fixtures relevant for running our examples, which you can load with python manage.py loaddata
<FIXTURE_NAME>:

• ‘demo_admin’: creates a single admin account (username: admin, password: admin) suitable for logging in
to the admin and managing the database.

• ‘demo_worker’: creates a single worker (username: demo, password: demo) suitable for running the simple
demo workflow.

4 Chapter 1. Getting Started with Orchestra in 5 Minutes

https://docs.djangoproject.com/en/1.8/ref/settings/#std:setting-EMAIL_BACKEND
https://aws.amazon.com/s3/
http://apps.google.com
https://slack.com/

Orchestra, Release 0.1.0

• ‘journalism_workflow’: creates a number of accounts with certifications suitable for running our more compli-
cated journalism workflow.

In addition, you can use the Orchestra admin (http://127.0.0.1:8000/orchestra/admin) to create new users and certifi-
cations of your own at any time once Orchestra is running.

Now Orchestra should be ready to go! If you’re confused about any of the above, check out our barebones example
project.

1.4 Run Orchestra

Now that Orchestra is configured, all that remains is to fire it up! Run your Django project with python
manage.py runserver (you’ll want to switch to something more robust in production, of course), and navigate
to http://127.0.0.1:8000/orchestra/app in your favorite browser.

If you see the Orchestra sign-in page, your setup is working! Logging in as the demo user we set up above should
show you a dashboard with no available tasks.

1.5 Run the Example Project Demo

To give you a feel for what it means to run an Orchestra workflow from end to end, we’ve included a very simple
example workflow with two steps, one machine and one human. The machine step takes a URL and extracts a random
image from the page. The human step asks an expert to rate how “awesome” the image is on a scale from one to five. If
you’re interested in how we defined the workflow, take a look at the code, though we walk through a more interesting
example in this documentation.

We’ve written an interactive script to walk through this simple workflow. To run it:

• Make sure you added simple_workflow to your INSTALLED_APPS setting following the previous section.

• Pull down the script into your project’s root directory (your_project, next to manage.py):

wget https://raw.githubusercontent.com/unlimitedlabs/orchestra/stable/example_project/interactive_simple_workflow_demo.py

• Run the script:

python interactive_simple_workflow_demo.py

The script will walk you through using the Orchestra Client API to create a new project based on the simple workflow,
explaining which API calls to use, what their output looks like, and how machine steps interact with human steps and
pass data back and forth.

If you don’t want to go to the trouble of running the script yourself, take a look at the transcript of expected
output.

1.4. Run Orchestra 5

http://127.0.0.1:8000/orchestra/admin
https://github.com/unlimitedlabs/orchestra/tree/stable/example_project
https://github.com/unlimitedlabs/orchestra/tree/stable/example_project
https://raw.githubusercontent.com/unlimitedlabs/orchestra/stable/simple_workflow/workflow.py

Orchestra, Release 0.1.0

6 Chapter 1. Getting Started with Orchestra in 5 Minutes

CHAPTER 2

Example Use Case: The Newsroom

Below we’ll walk you through an example of how Orchestra could be used in a newsroom by journalists, editors, and
photographers to craft a story. The code for this example can be found in our github repo.

2.1 The workflow

The image above depicts our example workflow, which is composed of the following steps:

• An editor finds a good story and sends a reporter off to investigate.

• The reporter writes up a draft article.

• A more experienced reporter then reviews the article and suggests improvements.

• In parallel with the reporting step, a photographer captures photos for the story.

• A senior photographer reviews the photos and selects the best ones.

• The selected photos are resized and recolored for display across different media.

• Finally, a copy editor adds headlines and photo captions to complete the story.

7

https://github.com/unlimitedlabs/orchestra/tree/stable/journalism_workflow

Orchestra, Release 0.1.0

To make things work in practice, there’s also a hidden machine step at the beginning of the workflow to set up some
google documents and folders for article writing and image storage.

2.2 Running the workflow

2.2.1 Setup

If you haven’t followed the getting started guide to set up Orchestra yet, you should do that now. Also, make sure that
’journalism_workflow’ is in your INSTALLED_APPS setting.

The journalism workflow requires Google Apps integration to run, so make sure in orchestra_settings.py
you set settings.GOOGLE_APPS to True, and fill in values for settings.GOOGLE_SERVICE_EMAIL,
settings.GOOGLE_P12_PATH, and settings.GOOGLE_PROJECT_ROOT_ID. Set up and correct values for
those settings are described in the Google Apps documentation.

Next, make sure you have the journalism workflow fixtures installed by running (if you haven’t already) python
manage.py loaddata journalism_workflow. This will create the following accounts:

• username: journalism-editor, password: editor. A worker with editor certification.

• username: journalism-reporter-1, password: reporter. A worker with entry-level reporter
certification.

• username: journalism-reporter-2, password: reporter. A worker with review-level reporter
certification.

• username: journalism-photographer-1, password: photographer. A worker with entry-level
photographer certification.

• username: journalism-photographer-2, password: photographer. A worker with review-level
photographer certification.

• username: journalism-copy-editor, password: copy-editor. A worker with copy_editor cer-
tification.

Finally, we’ve included a management script to start and monitor the workflow. Download it to the directory of your
project next to manage.py with:

wget https://raw.githubusercontent.com/unlimitedlabs/orchestra/stable/example_project/journalism_workflow_ctl.py

2.2.2 Start the workflow

To start the workflow:

• Make sure Orchestra is running with python manage.py runserver.

• In another tab, run:

python journalism_workflow_ctl –new

This will take a bit (because it is automatically running the document creation workflow step), but will eventually
return a project id (probably 1), which you should store for future use, and output JSON info about the project.

2.2.3 Complete the steps

To navigate the workflow, first log in as the journalism-editor user and request a new task. The interface should
look like the image below:

8 Chapter 2. Example Use Case: The Newsroom

https://developers.google.com/drive/web/delegation

Orchestra, Release 0.1.0

Fill out the high-level story idea and submit the task.

Next, log in as the journalism-reporter-1 worker, and you should now have a reporting task available. The
interface looks like the image below–use the google doc to write your article.

2.2. Running the workflow 9

Orchestra, Release 0.1.0

When you submit, you’ll note that the task appears in the ‘Awaiting Review’ section. That’s your cue to log in as
journalism-reporter-2 and review the work. Once you’re satisfied with it, accept it.

In parallel to logging in as a reporter, you can log in as journalism-photographer-1 and
journalism-photographer-2 to take and review photographs relevant to the article. You should see an in-
terface like the image below, which encourages you to add photos to a shared ‘Raw Photos’ folder. The interface
should look like the below:

10 Chapter 2. Example Use Case: The Newsroom

Orchestra, Release 0.1.0

Once you’ve accepted the photography as journalism-photographer-2, the machine task to auto-process the
photos should run. Our implementation simply makes any images in ‘Raw Photos’ greyscale, but you could imagine
more complicated adjustments.

Finally, log in as journalism-copy-editor to give the article a headline and caption the photos. You should
observe that your photos have been greyscaled as desired, as in the image below:

2.2. Running the workflow 11

Orchestra, Release 0.1.0

Once you submit the task, the workflow is done! You’ve successfully coordinated 6 expert workers and 2 machine
tasks to tell a story.

2.2.4 Verify the final JSON output

You’ll note that our workflow didn’t actually lay the article out in its final print or electronic form. That’s because,
in reality, this workflow would have been kicked off by a newsroom’s content management system with auto-layout
capabilities based on the JSON the project produced. To see the JSON that the workflow produces for input into such
a system, run:

python journalism_workflow_ctl --finish -p <PROJECT_ID>

where <PROJECT_ID> is the project id you were given when you created the project.

You should see output like:

{'articleDocument': 'https://docs.google.com/document/d/someid',
'headline': 'Your Headline',
'photos': [{'caption': 'Your Caption 1',

'src': 'https://docs.google.com/uc?id=someid'},
{'caption': 'Your Caption 2',
'src': 'htps://docs.google.com/uc?id=someid2'},
...

]
}

which summarizes all of the work accomplished in the workflow.

12 Chapter 2. Example Use Case: The Newsroom

Orchestra, Release 0.1.0

2.3 The code

All of the code used to create the new room workflow is located in our github repo. There are three main components
to the code: The workflow definition, the interface implementations for the human steps, and the python code for the
machine steps.

2.3.1 The workflow definition

The workflow is defined in journalism_workflow/workflow.py. It declaratively defines the steps listed above, in pro-
grammatic form.

First, we define the workflow with a name and short description:

from orchestra.workflow import Workflow

journalism_workflow = Workflow(
slug='journalism',
name='Journalism Workflow',
description='Create polished newspaper articles from scratch.',

)

Then, we add the steps of the workflow. Check out the source for all of the step definitions, but here we’ll list two.

Below is the definition of the human step that takes an editor’s story idea and asks a reporter to write an article based
on it:

from orchestra.workflow import Step

A reporter researches and drafts an article based on the editor's idea
reporter_step = Step(

slug='reporting',
name='Reporting',
description='Research and draft the article text',
worker_type=Step.WorkerType.HUMAN,
creation_depends_on=[editor_step],
required_certifications=['reporter'],
user_interface={
'javascript_includes': [

'/static/journalism_workflow/reporter/js/modules.js',
'/static/journalism_workflow/reporter/js/controllers.js',
'/static/journalism_workflow/reporter/js/directives.js',

],
'stylesheet_includes': [],
'angular_module': 'journalism_workflow.reporter.module',
'angular_directive': 'reporter',

},

A senior reporter should review the article text.
review_policy={
'policy': 'sampled_review',
'rate': 1, # review all tasks
'max_reviews': 1 # exactly once

},
)
journalism_workflow.add_step(reporter_step)

Note that we’ve specified step dependencies with creation_depends_on, required worker skills with
required_certifications, and user interface javascript files with user_interface. In addition,

2.3. The code 13

https://github.com/unlimitedlabs/orchestra/tree/stable/journalism_workflow
https://github.com/unlimitedlabs/orchestra/blob/stable/journalism_workflow/workflow.py
https://github.com/unlimitedlabs/orchestra/blob/stable/journalism_workflow/workflow.py

Orchestra, Release 0.1.0

we’ve asked that all reporters have their work reviewed by a senior reporter by specifying a sampled
review_policy with a rate of 100% (rate goes from 0 to 1). Finally, we add the step to our workflow with
journalism_workflow.add_step(reporter_step).

Next, we show a machine step, in this case the step that takes our photographers’ output (a directory of images), and
processes those images for layout:

photo_adjustment_step = Step(
slug='photo_adjustment',
name='Photo Adjustment',
description='Automatically crop and rescale images',
worker_type=Step.WorkerType.MACHINE,
creation_depends_on=[photographer_step],
function=autoadjust_photos,

)
journalism_workflow.add_step(photo_adjustment_step)

The basic arguments are similar, but we specify the step type as Step.WorkerType.MACHINE, and insead of a
user interface, we pass a python function to execute (autoadjust_photos() here).

2.3.2 The interface implementations

In order for our workflows to be usable by experts, we need to display an interface for each human step. Orchestra
uses angular.js for all of our interfaces. The interfaces all live under journalism_workflow/static/journalism_workflow.

Remember that in our workflow definition, we specified user interfaces with a JSON object that looked like this:

user_interface={
'javascript_includes': [
'/static/journalism_workflow/editor/js/modules.js',
'/static/journalism_workflow/editor/js/controllers.js',
'/static/journalism_workflow/editor/js/directives.js',

],
'stylesheet_includes': [],
'angular_module': 'journalism_workflow.editor.module',
'angular_directive': 'editor',

},

Orchestra will automatically inject the specified angular_directive into the website, which should be imple-
mented in the files listed in javascript_includes. To have CSS available in your interface, just list the file
paths in stylesheet_includes.

An angular interface is composed of a few things: a controller that sets up state for the interface, a directive that injects
the interface into a website, a module that registers the controllers and directives, and a partial that contains an html
template for the interface. The angular docs do a better job of explaining these than we will, but here are a couple of
things to keep in mind:

• In our directives, we use:

scope: {
taskAssignment: '=',

}

to ensure that the input data for a step is available (it will be accessible at taskAssignment.task.data

• In our controllers, we use:

MyController.$inject = ['$scope', 'orchestraService'];

14 Chapter 2. Example Use Case: The Newsroom

https://angularjs.org/
https://github.com/unlimitedlabs/orchestra/tree/stable/journalism_workflow/static/journalism_workflow
https://docs.angularjs.org/guide/controller
https://docs.angularjs.org/guide/directive
https://docs.angularjs.org/guide/module
https://docs.angularjs.org/guide/templates
https://docs.angularjs.org

Orchestra, Release 0.1.0

to ensure that the task data is passed to the controller. orchestraService
has useful convenience functions for dealing with the task data like
orchestraService.taskUtils.findPrerequisite($scope.taskAssignment,
step_slug), which will get the taskAssignment for the previous step called step_slug.

And of course, please refer to the newsroom workflow step interfaces as examples.

2.3.3 The machine steps

Our workflow has two machine steps, one for creating documents and folders, and one for adjusting images.

A machine step is just a Python function with a simple signature:

def my_machine_step(project_data, prerequisites):
implement machine-y goodness
return { 'output_data_key': 'value' }

It takes two arguments, a python dictionary containing global project data and a python dictionary containing state from
all prerequisite workflow steps (and their prerequisites, and so on). The function can do whatever it likes, and returns
a JSON-encodable dictionary containing state that should be made available to future steps (in the prerequisites
argument for a machine step, and in the angular scope for a human interface).

For example, our image adjustment step (in journalism_workflow/adjust_photos.py) gets the global project directory
from project_data, uses Orchestra’s Google Apps integration to create a new subfolder for processed photos,
downloads all the raw photos, uses pillow to process them (for now it just makes them greyscale), then re-uploads
them to the new folder.

2.3. The code 15

https://github.com/unlimitedlabs/orchestra/tree/stable/journalism_workflow/static/journalism_workflow
https://github.com/unlimitedlabs/orchestra/blob/stable/journalism_workflow/documents.py
https://github.com/unlimitedlabs/orchestra/blob/stable/journalism_workflow/adjust_photos.py
https://github.com/unlimitedlabs/orchestra/blob/stable/journalism_workflow/adjust_photos.py
https://python-pillow.github.io/

Orchestra, Release 0.1.0

16 Chapter 2. Example Use Case: The Newsroom

CHAPTER 3

Key Concepts

Let’s first recap our example reporting workflow:

• An editor finds a good story and sends a reporter off to investigate.

• The reporter writes up a draft article.

• A more experienced reporter then reviews the article and suggests improvements.

• In parallel with the reporting step, a photographer captures photos for the story.

• A senior photographer reviews the photos and selects the best ones.

• The selected photos are resized and recolored for display across different media.

• Finally, a copy editor adds headlines and photo captions to complete the story.

We’ll now walk you through major Orchestra concepts based on the example above.

3.1 Workflows

• The entire process above is called a workflow, comprised of five component steps.

17

Orchestra, Release 0.1.0

• Two of these steps require review, where more experienced experts review the original work performed. Custom
review policies (e.g., sampled or systematic review) for tasks can be easily created in Orchestra.

• The photo resizing step is a machine step, completed by automation rather than by experts.

• Each step emits a JSON blob with structured data generated by either humans or machines.

• Steps have access to data emitted by previous steps that they depend on. In the example, the copy editor has
access to both the story and the resized photos.

3.2 Project Distribution

• Projects are a series of interconnected tasks. A project is an instance of a workflow; a task is an instance of a
step.

– An editor with a story about local elections would create an elections project, with tasks for a re-
porter/photographer/copy editor.

• Tasks are carried out by an expert or by a machine.

– Photographers capture the story.

– Machines resize and recolor the photos.

• Experts can come from anywhere, from a company’s employees to freelancers on platforms like Upwork.

3.3 Hierarchical Review

• Core experts do the initial work on a task.

• Reviewers provide feedback to other experts to make their work even better.

• The core expert submits the task when their work is complete.

• The reviewer can choose to accept the task, which is either selected for further review or marked as complete.

• They could also choose to return the task, requesting changes from and giving feedback to the worker they are
reviewing.

3.4 Worker Certification

• Certifications allow experts to work on tasks they’re great at.

• Experts can work toward all sorts of certifications, picking up practice tasks to build experience.

– Joseph is a solid reporter but needs a little more practice as a photographer—let’s give him some simple
tasks so he can improve!

• Experts need additional certification to work in a reviewer role.

– Amy has been reporting for quite some time and would be great at mentoring new reporters.

18 Chapter 3. Key Concepts

Orchestra, Release 0.1.0

3.5 Life of a Task

Below are two images of the Orchestra dashboard, the launching point for expert workers. Click to see how tasks
move differently across the dashboard for core workers and reviewers.

3.5.1 Core Expert

A core expert performs initial task work which will later be reviewed. The diagram below shows a task’s movement
through the core worker’s dashboard.

3.5.2 Reviewer

A reviewer evaluates the core expert’s work and provides feedback. The diagram below shows a task’s movement
through a reviewer’s dashboard.

3.5. Life of a Task 19

Orchestra, Release 0.1.0

20 Chapter 3. Key Concepts

CHAPTER 4

Our Motivation

Unlimited Labs has open sourced Orchestra as part of our goal to build a brighter future of work.

We are a startup based in NYC that is passionate about improving how people do creative and analytical work. We have
a strong team of engineers and designers who have worked extensively on systems that help people work productively
online.

Beyond focusing on profit, we believe that the products and experiences we design should be considerate of their
greater social context and impact. To stay true to these values, we are in the process of becoming a B-certified
corporation.

21

http://unlimitedlabs.com/
http://www.bcorporation.net/what-are-b-corps
http://www.bcorporation.net/what-are-b-corps

Orchestra, Release 0.1.0

22 Chapter 4. Our Motivation

CHAPTER 5

How to contribute to Orchestra

So you want to get involved in developing Orchestra. Great! We’re excited to have your support. This document lays
down a few guidelines to help the whole process run smoothly.

5.1 Getting involved

First, if you find a bug in the code or documentation, check out our open issues and pull requests to see if we’re already
aware of the problem. Also feel free to reach out to us on gitter to answer questions at any time, or subscribe to the
Orchestra mailing list for longer conversations.

If you’ve uncovered something new, please create an issue describing the problem. If you’ve written code that fixes an
issue, create a pull request (PR) so it’s easy for us to incorporate your changes.

5.2 Development Workflow

Github provides a nice overview on how to create a pull request.

Some general rules to follow:

• Do your work in a fork of the Orchestra repo.

• Create a branch for each feature/bug in Orchestra that you’re working on. These branches are often called
“feature” or “topic” branches.

• Use your feature branch in the pull request. Any changes that you push to your feature branch will automatically
be shown in the pull request.

• Keep your pull requests as small as possible. Large pull requests are hard to review. Try to break up your
changes into self-contained and incremental pull requests, if need be, and reference dependent pull requests,
e.g. “This pull request builds on request #92. Please review #92 first.”

• Include unit tests with your pull request. We love tests and use CircleCI to check every pull request and commit.
Check out our tests in orchestra/tests to see examples of how to write unit tests. Before submitting a
PR, make sure that running make test from the root directory of the repository succeeds.

• Additionally, we try to maintain high code coverage. To verify that your changes are well-covered by tests, run
make test_coverage, which will run the tests, then print out percent coverage for each file in Orchestra.
Aim for 100% for every new file you create!

• Once you submit a PR, you’ll get feedback on your code, sometimes asking for a few rounds of changes before
your PR is accepted. After each round of comments, make changes accordingly, then squash all changes for that
round into a single commit with a name like ‘changes round 0’.

23

https://github.com/unlimitedlabs/orchestra/issues
https://github.com/unlimitedlabs/orchestra/pulls
https://gitter.im/unlimitedlabs/orchestra
https://groups.google.com/forum/#!forum/orchestra-devel
https://groups.google.com/forum/#!forum/orchestra-devel
https://github.com/unlimitedlabs/orchestra/issues
https://help.github.com/articles/creating-a-pull-request/
https://help.github.com/articles/creating-a-pull-request/
https://help.github.com/articles/fork-a-repo/
https://circleci.com/
https://en.wikipedia.org/wiki/Code_coverage

Orchestra, Release 0.1.0

• After your PR is accepted, you should squash all of your changes into a single commit before we can merge
them into the main codebase.

• If your feature branch is not based off the latest master, you will be asked to rebase it before it is merged. This
ensures that the commit history is linear, which makes the commit history easier to read.

• How do you rebase on to master, you ask? After syncing your fork against the Orchestra master, run:

git checkout master
git pull
git checkout your-branch
git rebase master

• How do you squash changes, you ask? Easy:

git log
<find the commit hash that happened immediately before your first commit>
git reset --soft $THAT_COMMIT_HASH$
git commit -am "A commit message that summarizes all of your changes."
git push -f origin your-branch

• Remember to reference any issues that your pull request fixes in the commit message, for example ‘Fixes #12’.
This will ensure that the issue is automatically closed when the PR is merged.

5.3 Quick Style Guide

We generally stick to PEP8 for our coding style, use spaces for indenting, and make sure to wrap lines at 79 characters.

We have a linter built in to our test infrastructure, so make test won’t succeed until the code is cleaned up. To run
the linter standalone, just run make lint. Of course, sometimes you’ll write code that will never make the linter
happy (for example, URL strings longer than 80 characters). In that case, just add a # noqa comment to the end of
the line to tell the linter to ignore it. But use this sparingly!

24 Chapter 5. How to contribute to Orchestra

https://help.github.com/articles/syncing-a-fork/
http://legacy.python.org/dev/peps/pep-0008/

CHAPTER 6

API Reference

6.1 Client API

Endpoints for communicating with Orchestra.

All requests must be signed using HTTP signatures:

from httpsig.requests_auth import HTTPSignatureAuth

auth = HTTPSignatureAuth(key_id=settings.ORCHESTRA_PROJECT_API_KEY,
secret=settings.ORCHESTRA_PROJECT_API_SECRET,
algorithm='hmac-sha256')

response = requests.get('https://www.example.com/orchestra/api/project/create_project', auth=auth)

POST /orchestra/api/project/create_project
Creates a project with the given data and returns its ID.

Query Parameters

• project_id – The ID for the desired project.

• task_class – One of real or training to specify the task class type.

• workflow_slug – The slug corresponding to the desired project’s workflow.

• description – A short description of the project.

• priority – An integer describing the priority of the project, with higher numbers describ-
ing a greater priority.

• project_data – Other miscellaneous data with which to initialize the project.

• review_document_url – Team messages Google Doc for the project. ???

Example response:

{
"project_id": 123,

}

POST /orchestra/api/project/project_information
Retrieve detailed information about a given project.

Query Parameters

• project_id – The ID for the desired project.

25

http://tools.ietf.org/html/draft-cavage-http-signatures-03

Orchestra, Release 0.1.0

Example response:

{
"project": {

"id": 123,
"short_description": "Project Description",
"priority": 10,
"review_document_url": "http://review.document.url",
"task_class": 1,
"project_data": {

"sample_data_item": "sample_data_value_new"
},
"workflow_slug": "sample_workflow_slug",
"start_datetime": "2015-09-23T20:16:02.667288Z"

},
"steps": [

["sample_step_slug", "Sample step description"]
],
"tasks": {

"sample_step_slug": {
"id": 456,
"project": 123,
"status": "Processing",
"step_slug": "sample_step_slug",
"latest_data": {

"sample_data_item": "sample_data_value_new"
},
"assignments": [

{
"id": 558,
"snapshots": {

"__version": 1,
"snapshots": [

{
"work_time_seconds": 3660,
"datetime": "2015-09-23T20:16:15.821171",
"data": {

"sample_data_item": "sample_data_value_old",
"__version": 1

},
"type": 0

}
]

},
"worker": "sample_worker_username",
"task": 456,
"in_progress_task_data": {

"sample_data_item": "sample_data_value_new"
},
"status": "Processing",
"start_datetime": "2015-09-23T20:16:17.355291Z"

}
]

}
}

}

GET /orchestra/api/project/workflow_types
Return all stored workflows.

26 Chapter 6. API Reference

Orchestra, Release 0.1.0

Example response:

{
"workflows": {

"reporting": "A sample workflow for the newsroom."
}

}

6.1. Client API 27

Orchestra, Release 0.1.0

28 Chapter 6. API Reference

CHAPTER 7

Core Reference

Core reference still in progress.

Contents

• Core Reference
– Workflow
– Models
– Task Lifecycle

7.1 Workflow

class orchestra.workflow.Step(**kwargs)
Steps represent nodes on a workflow execution graph.

slug
str

Unique identifier for the step.

name
str

Human-readable name for the step.

description
str

A longer description of the step.

worker_type
orchestra.workflow.Step.WorkerType

Indicates whether the policy is for a human or machine.

creation_depends_on
[str]

Slugs for steps on which this step’s creation depends.

submission_depends_on
[str]

Slugs for steps on which this step’s submission depends.

29

Orchestra, Release 0.1.0

function
function

Function to execute during step. Should be present only for machine tasks

required_certifications
[str]

Slugs for certifications required for a worker to pick up tasks based on this step.

class WorkerType
Specifies whether step is performed by human or machine

class orchestra.workflow.Workflow(**kwargs)
Workflows represent execution graphs of human and machine steps.

slug
str

Unique identifier for the workflow.

name
str

Human-readable name for the workflow.

description
str

A longer description of the workflow.

steps
dict

Steps comprising the workflow.

add_step(step)
Add step to the workflow.

Parameters step (orchestra.workflow.Step) – The step to be added.

Returns None

Raises

• orchestra.core.errors.InvalidSlugValue –

Step slug should have fewer than 200 characters.

• orchestra.core.errors.SlugUniquenessError –

Step slug has already been used in this workflow.

get_human_steps()
Return steps from the workflow with a human worker_type.

Parameters None –

Returns

steps –

Steps from the workflow with a human worker_type..

Return type [orchestra.workflow.Step]

get_step(slug)
Return the specified step from the workflow.

30 Chapter 7. Core Reference

Orchestra, Release 0.1.0

Parameters slug (str) – The slug of the desired step.

Returns

step –

The specified step from the workflow.

Return type orchestra.workflow.Step

get_step_slugs()
Return all step slugs for the workflow.

Parameters None –

Returns

slugs –

List of step slugs for the workflow.

Return type [str]

get_steps()
Return all steps for the workflow.

Parameters None –

Returns

steps –

List of steps for the workflow.

Return type [orchestra.workflow.Step]

orchestra.workflow.get_default_policy(worker_type, policy_name)
Return the default value for a specified policy.

Parameters

• worker_type (orchestra.workflow.Step.WorkerType) – Indicates whether the policy is
for a human or machine.

• policy_name (str) – The specified policy identifier.

Returns

default_policy –

A dict containing the default policy for the worker type and policy name specified.

Return type dict

orchestra.workflow.get_step_choices()
Return step data formatted as choices for a model field.

Parameters None –

Returns

step_choices –

A tuple of tuples containing each step slug and human-readable name.

Return type tuple

orchestra.workflow.get_workflow_by_slug(slug)
Return the workflow specified by slug.

7.1. Workflow 31

Orchestra, Release 0.1.0

Parameters slug (str) – The slug of the desired workflow.

Returns

workflow –

The corresponding workflow object.

Return type orchestra.workflow.Workflow

orchestra.workflow.get_workflow_choices()
Return workflow data formatted as choices for a model field.

Parameters None –

Returns

workflow_choices –

A tuple of tuples containing each workflow slug and human-readable name.

Return type tuple

orchestra.workflow.get_workflows()
Return all stored workflows.

Parameters None –

Returns

workflows –

A dict of all workflows keyed by slug.

Return type [orchestra.workflow.Workflow]

7.2 Models

class orchestra.models.Certification(*args, **kwargs)
Certifications allow workers to perform different types of tasks.

slug
str

Unique identifier for the certification.

name
str

Human-readable name for the certification.

description
str

A longer description of the certification.

required_certifications
[orchestra.models.Certification]

Prerequisite certifications for possessing this one.

class orchestra.models.Project(*args, **kwargs)
A project is a collection of tasks representing a workflow.

32 Chapter 7. Core Reference

Orchestra, Release 0.1.0

status
orchestra.models.Project.Status

Represents whether the project is being actively worked on.

workflow_slug
str

Identifies the workflow that the project represents.

start_datetime
datetime.datetime

The time the project was created.

priority
int

Represents the relative priority of the project.

task_class
int

Represents whether the project is a worker training exercise or a deliverable project.

review_document_url
str

The URL for the review document to be passed between workers and reviwers for the project’s tasks.

slack_group_id
str

The project’s internal Slack group ID if Slack integration is enabled.

class orchestra.models.Task(*args, **kwargs)
A task is a cohesive unit of work representing a workflow step.

step_slug
str

Identifies the step that the project represents.

project
orchestra.models.Project

The project to which the task belongs.

status
orchestra.models.Task.Status

Represents the task’s stage within its lifecycle.

class orchestra.models.TaskAssignment(*args, **kwargs)
A task assignment is a worker’s assignment for a given task.

start_datetime
datetime.datetime

The time the project was created.

worker
orchestra.models.Worker

The worker to whom the given task is assigned.

7.2. Models 33

Orchestra, Release 0.1.0

task
orchestra.models.Task

The given task for the task assignment.

status
orchestra.models.Project.Status

Represents whether the assignment is currently being worked on.

assignment_counter
int

Identifies the level of the assignment in the given task’s review hierarchy (i.e., 0 represents an entry-level
worker, 1 represents the task’s first reviewer, etc.).

in_progress_task_data
str

A JSON blob containing the worker’s input data for the task assignment.

snapshots
str

A JSON blob containing saved snapshots of previous data from the task assignment.

Constraints: task and assignment_counter are taken to be unique_together.

Task assignments for machine-type tasks cannot have a worker, while those for human-type tasks must
have one.

class orchestra.models.Worker(*args, **kwargs)
Workers are human experts within the Orchestra ecosystem.

user
django.contrib.auth.models.User

Django user whom the worker represents.

start_datetime
datetime.datetime

The time the worker was created.

slack_username
str

The worker’s Slack username if Slack integration is enabled.

class orchestra.models.WorkerCertification(*args, **kwargs)
A WorkerCertification maps a worker to a certification they possess.

certification
orchestra.models.Certification

Certification belonging to the corresponding worker.

worker
orchestra.models.Worker

Worker possessing the given certification.

task_class
orchestra.models.WorkerCertification.TaskClass

34 Chapter 7. Core Reference

Orchestra, Release 0.1.0

Represents whether the worker is in training for the given certification or prepared to work on real tasks.

role
orchestra.models.WorkerCertification.Role

Represents whather the worker is an entry-level or review worker for the given certification.

Constraints: certification, worker, task_class, and role are taken to be unique_together.

Worker must possess an entry-level WorkerCertification before obtaining a reviewer one.

7.3 Task Lifecycle

orchestra.utils.task_lifecycle.assign_task(worker_id, task_id)
Return a given task after assigning or reassigning it to the specified worker.

Parameters

• worker_id (int) – The ID of the worker to be assigned.

• task_id (int) – The ID of the task to be assigned.

Returns

task –

The newly assigned task.

Return type orchestra.models.Task

Raises

• orchestra.core.errors.TaskAssignmentError –

The specified worker is already assigned to the given task or the task status is not compatible
with new assignment.

• orchestra.core.errors.WorkerCertificationError –

The specified worker is not certified for the given task.

orchestra.utils.task_lifecycle.create_subsequent_tasks(project)
Create tasks for a given project whose dependencies have been completed.

Parameters project (orchestra.models.Project) – The project for which to create tasks.

Returns

project –

The modified project object.

Return type orchestra.models.Project

orchestra.utils.task_lifecycle.end_project(project_id)
Mark the specified project and its component tasks as aborted.

Parameters project_id (int) – The ID of the project to abort.

Returns None

orchestra.utils.task_lifecycle.get_new_task_assignment(worker, task_status)
Check if new task assignment is available for the provided worker and task status; if so, assign the task to the
worker and return the assignment.

7.3. Task Lifecycle 35

Orchestra, Release 0.1.0

Parameters

• worker (orchestra.models.Worker) – The worker submitting the task.

• task_status (orchestra.models.Task.Status) – The status of the desired new task assign-
ment.

Returns

assignment –

The newly created task assignment.

Return type orchestra.models.TaskAssignment

Raises

• orchestra.core.errors.WorkerCertificationError –

No human tasks are available for the given task status except those for which the worker is
not certified.

• orchestra.core.errors.NoTaskAvailable –

No human tasks are available for the given task status.

orchestra.utils.task_lifecycle.get_next_task_status(task, snapshot_type)
Given current task status and snapshot type provide new task status. If the second level reviewer rejects a task
then initial reviewer cannot reject it further down, but must fix and submit the task.

Parameters

• task (orchestra.models.Task) – The specified task object.

• task_status (orchestra.models.TaskAssignment.SnapshotType) – The action to take
upon task submission (e.g., SUBMIT, ACCEPT, REJECT).

Returns

next_status –

The next status of task, once the snapshot_type action has been completed.

Return type orchestra.models.Task.Status

Raises orchestra.core.errors.IllegalTaskSubmission –

The snapshot_type action cannot be taken for the task in its current status.

orchestra.utils.task_lifecycle.get_task_assignment_details(task_assignment)
Return various information about the specified task assignment.

Parameters task_assignment (orchestra.models.TaskAssignment) – The specified task assign-
ment.

Returns

task_assignment_details –

Information about the specified task assignment.

Return type dict

orchestra.utils.task_lifecycle.get_task_details(task_id)
Return various information about the specified task.

Parameters task_id (int) – The ID of the desired task.

Returns task_details – Information about the specified task.

36 Chapter 7. Core Reference

Orchestra, Release 0.1.0

Return type dict

orchestra.utils.task_lifecycle.get_task_overview_for_worker(task_id, worker)
Get information about task and its assignment for worker.

Parameters

• task_id (int) – The ID of the desired task object.

• worker (orchestra.models.Worker) – The specified worker object.

Returns

task_assignment_details –

Information about task and its assignment for worker.

Return type dict

orchestra.utils.task_lifecycle.previously_completed_task_data(task)
Returns a dict mapping task prerequisites onto their latest task assignment information. The dict is of the form:
{‘previous-slug’: {task_assignment_data}, ...}

Parameters task (orchestra.models.Task) – The specified task object.

Returns

prerequisites –

A dict mapping task prerequisites onto their latest task assignment information..

Return type dict

orchestra.utils.task_lifecycle.save_task(task_id, task_data, worker)
Save the latest data to the database for a task assignment, overwriting previously saved data.

Parameters

• task_id (int) – The ID of the task to save.

• task_data (str) – A JSON blob of task data to commit to the database.

• worker (orchestra.models.Worker) – The worker saving the task.

Returns None

Raises orchestra.core.errors.TaskAssignmentError –

The provided worker is not assigned to the given task or the assignment is in a non-processing
state.

orchestra.utils.task_lifecycle.submit_task(task_id, task_data, snapshot_type, worker,
work_time_seconds)

Returns a dict mapping task prerequisites onto their latest task assignment information. The dict is of the form:
{‘previous-slug’: {task_assignment_data}, ...}

Parameters

• task_id (int) – The ID of the task to submit.

• task_data (str) – A JSON blob of task data to submit.

• snapshot_type (orchestra.models.TaskAssignment.SnapshotType) – The action to take
upon task submission (e.g., SUBMIT, ACCEPT, REJECT).

• worker (orchestra.models.Worker) – The worker submitting the task.

• work_time_seconds (int) – The time taken by the worker on the latest iteration of their
task assignment.

7.3. Task Lifecycle 37

Orchestra, Release 0.1.0

Returns

task –

The modified task object.

Return type orchestra.models.Task

Raises

• orchestra.core.errors.IllegalTaskSubmission –

Submission prerequisites for the task are incomplete or the assignment is in a non-processing
state.

• orchestra.core.errors.TaskAssignmentError –

Worker belongs to more than one assignment for the given task.

• orchestra.core.errors.TaskStatusError –

Task has already been completed.

orchestra.utils.task_lifecycle.task_history_details(task_id)
Return assignment details for a specified task.

Parameters task_id (int) – The ID of the desired task object.

Returns

details –

A dictionary containing the current task assignment and an in-order list of related task assign-
ments.

Return type dict

orchestra.utils.task_lifecycle.tasks_assigned_to_worker(worker)
Get all the tasks associated with worker.

Parameters worker (orchestra.models.Worker) – The specified worker object.

Returns

tasks_assigned –

A dict with information about the worker’s tasks, used in displaying the Orchestra dashboard.

Return type dict

orchestra.utils.task_lifecycle.update_related_assignment_status(task, assign-
ment_counter,
data)

Copy data to a specified task assignment and mark it as processing.

Parameters

• task (orchestra.models.Task) – The task whose assignments will be updated.

• assignment_counter (int) – The index of the assignment to be updated.

• data (str) – A JSON blob containing data to add to the assignment.

Returns None

orchestra.utils.task_lifecycle.worker_assigned_to_max_tasks(worker)
Check whether worker is assigned to the maximum number of tasks.

Parameters worker (orchestra.models.Worker) – The specified worker object.

38 Chapter 7. Core Reference

Orchestra, Release 0.1.0

Returns

assigned_to_max_tasks –

True if worker is assigned to the maximum number of tasks.

Return type bool

orchestra.utils.task_lifecycle.worker_assigned_to_rejected_task(worker)
Check whether worker is assigned to a task that has been rejected.

Parameters worker (orchestra.models.Worker) – The specified worker object.

Returns

assigned_to_rejected_task –

True if worker is assigned to a task that has been rejected.

Return type bool

orchestra.utils.task_lifecycle.worker_has_reviewer_status(worker, task_class=1)
Check whether worker is a reviewer for any certification for a given task class.

Parameters

• worker (orchestra.models.Worker) – The specified worker object.

• task_class (orchestra.models.WorkerCertification.TaskClass) – The specified task
class.

Returns

has_reviwer_status –

True if worker is a reviewer for any certification for a given task class.

Return type bool

orchestra.utils.task_properties.all_workers(task)
Return all workers for a given task.

Parameters task (orchestra.models.Task) – The specified task object.

Returns

all_workers –

A list of all workers involved with task.

Return type [orchestra.models.Worker]

orchestra.utils.task_properties.assignment_history(task)
Return all assignments for task ordered by assignment_counter.

Parameters task (orchestra.models.Task) – The specified task object.

Returns

assignment_history –

All assignments for task ordered by assignment_counter.

Return type [orchestra.models.TaskAssignment]

orchestra.utils.task_properties.current_assignment(task)
Return the in-progress assignment for task.

Parameters task (orchestra.models.Task) – The specified task object.

7.3. Task Lifecycle 39

Orchestra, Release 0.1.0

Returns

current_assignment –

The in-progress assignment for task.

Return type orchestra.models.TaskAssignment

orchestra.utils.task_properties.is_worker_assigned_to_task(worker, task)
Check if specified worker is assigned to the given task.

Parameters

• worker (orchestra.models.Worker) – The specified worker object.

• task (orchestra.models.Task) – The given task object.

Returns

worker_assigned_to_task –

True if worker has existing assignment for the given task.

Return type bool

40 Chapter 7. Core Reference

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

41

Orchestra, Release 0.1.0

42 Chapter 8. Indices and tables

Python Module Index

o
orchestra.models, 32
orchestra.utils.task_lifecycle, 35
orchestra.utils.task_properties, 39
orchestra.workflow, 29

43

Orchestra, Release 0.1.0

44 Python Module Index

HTTP Routing Table

/orchestra
GET /orchestra/api/project/workflow_types,

26
POST /orchestra/api/project/create_project,

25
POST /orchestra/api/project/project_information,

25

45

Orchestra, Release 0.1.0

46 HTTP Routing Table

Index

A
add_step() (orchestra.workflow.Workflow method), 30
all_workers() (in module orchestra.utils.task_properties),

39
assign_task() (in module orchestra.utils.task_lifecycle),

35
assignment_counter (orchestra.models.TaskAssignment

attribute), 34
assignment_history() (in module orches-

tra.utils.task_properties), 39

C
Certification (class in orchestra.models), 32
certification (orchestra.models.WorkerCertification

attribute), 34
create_subsequent_tasks() (in module orches-

tra.utils.task_lifecycle), 35
creation_depends_on (orchestra.workflow.Step attribute),

29
current_assignment() (in module orches-

tra.utils.task_properties), 39

D
description (orchestra.models.Certification attribute), 32
description (orchestra.workflow.Step attribute), 29
description (orchestra.workflow.Workflow attribute), 30

E
end_project() (in module orchestra.utils.task_lifecycle),

35

F
function (orchestra.workflow.Step attribute), 30

G
get_default_policy() (in module orchestra.workflow), 31
get_human_steps() (orchestra.workflow.Workflow

method), 30
get_new_task_assignment() (in module orches-

tra.utils.task_lifecycle), 35

get_next_task_status() (in module orches-
tra.utils.task_lifecycle), 36

get_step() (orchestra.workflow.Workflow method), 30
get_step_choices() (in module orchestra.workflow), 31
get_step_slugs() (orchestra.workflow.Workflow method),

31
get_steps() (orchestra.workflow.Workflow method), 31
get_task_assignment_details() (in module orches-

tra.utils.task_lifecycle), 36
get_task_details() (in module orches-

tra.utils.task_lifecycle), 36
get_task_overview_for_worker() (in module orches-

tra.utils.task_lifecycle), 37
get_workflow_by_slug() (in module orchestra.workflow),

31
get_workflow_choices() (in module orchestra.workflow),

32
get_workflows() (in module orchestra.workflow), 32

I
in_progress_task_data (orches-

tra.models.TaskAssignment attribute), 34
is_worker_assigned_to_task() (in module orches-

tra.utils.task_properties), 40

N
name (orchestra.models.Certification attribute), 32
name (orchestra.workflow.Step attribute), 29
name (orchestra.workflow.Workflow attribute), 30

O
orchestra.models (module), 32
orchestra.utils.task_lifecycle (module), 35
orchestra.utils.task_properties (module), 39
orchestra.workflow (module), 29

P
previously_completed_task_data() (in module orches-

tra.utils.task_lifecycle), 37
priority (orchestra.models.Project attribute), 33

47

Orchestra, Release 0.1.0

Project (class in orchestra.models), 32
project (orchestra.models.Task attribute), 33

R
required_certifications (orchestra.models.Certification at-

tribute), 32
required_certifications (orchestra.workflow.Step at-

tribute), 30
review_document_url (orchestra.models.Project at-

tribute), 33
role (orchestra.models.WorkerCertification attribute), 35

S
save_task() (in module orchestra.utils.task_lifecycle), 37
slack_group_id (orchestra.models.Project attribute), 33
slack_username (orchestra.models.Worker attribute), 34
slug (orchestra.models.Certification attribute), 32
slug (orchestra.workflow.Step attribute), 29
slug (orchestra.workflow.Workflow attribute), 30
snapshots (orchestra.models.TaskAssignment attribute),

34
start_datetime (orchestra.models.Project attribute), 33
start_datetime (orchestra.models.TaskAssignment at-

tribute), 33
start_datetime (orchestra.models.Worker attribute), 34
status (orchestra.models.Project attribute), 32
status (orchestra.models.Task attribute), 33
status (orchestra.models.TaskAssignment attribute), 34
Step (class in orchestra.workflow), 29
Step.WorkerType (class in orchestra.workflow), 30
step_slug (orchestra.models.Task attribute), 33
steps (orchestra.workflow.Workflow attribute), 30
submission_depends_on (orchestra.workflow.Step at-

tribute), 29
submit_task() (in module orchestra.utils.task_lifecycle),

37

T
Task (class in orchestra.models), 33
task (orchestra.models.TaskAssignment attribute), 33
task_class (orchestra.models.Project attribute), 33
task_class (orchestra.models.WorkerCertification at-

tribute), 34
task_history_details() (in module orches-

tra.utils.task_lifecycle), 38
TaskAssignment (class in orchestra.models), 33
tasks_assigned_to_worker() (in module orches-

tra.utils.task_lifecycle), 38

U
update_related_assignment_status() (in module orches-

tra.utils.task_lifecycle), 38
user (orchestra.models.Worker attribute), 34

W
Worker (class in orchestra.models), 34
worker (orchestra.models.TaskAssignment attribute), 33
worker (orchestra.models.WorkerCertification attribute),

34
worker_assigned_to_max_tasks() (in module orches-

tra.utils.task_lifecycle), 38
worker_assigned_to_rejected_task() (in module orches-

tra.utils.task_lifecycle), 39
worker_has_reviewer_status() (in module orches-

tra.utils.task_lifecycle), 39
worker_type (orchestra.workflow.Step attribute), 29
WorkerCertification (class in orchestra.models), 34
Workflow (class in orchestra.workflow), 30
workflow_slug (orchestra.models.Project attribute), 33

48 Index

	Getting Started with Orchestra in 5 Minutes
	Install Dependencies
	Create a Django Project
	Install and Configure Orchestra
	Run Orchestra
	Run the Example Project Demo

	Example Use Case: The Newsroom
	The workflow
	Running the workflow
	The code

	Key Concepts
	Workflows
	Project Distribution
	Hierarchical Review
	Worker Certification
	Life of a Task

	Our Motivation
	How to contribute to Orchestra
	Getting involved
	Development Workflow
	Quick Style Guide

	API Reference
	Client API

	Core Reference
	Workflow
	Models
	Task Lifecycle

	Indices and tables
	Python Module Index
	HTTP Routing Table

